By Manuel Rodriguez
This picture show the air mass and pressure on a map of the US .

Air Pressure - Pressure caused by the weight of the atmosphere. At sea level it has a mean value of one atmosphere but reduces with increasing altitude.

The standard atmosphere (symbol: atm) is a unit of pressure and is defined as being equal to 101,325 Pa or 101.325 kPa. [1][2] The following units are equivalent, but only to the number of decimal places displayed: 760 mmHg (torr), 29.92 inHg, 14.696 PSI, 1013.25 millibars. One standard atmosphere is standard pressure used for pneumatic fluid power (ISO R554), and in the aerospace (ISO 2533) and petroleum (ISO 5024) industries.
In 1999, the International Union of Pure and Applied Chemistry (IUPAC) recommended that for the purposes of specifying the properties of substances, “the standard pressure” should be defined as precisely 100 kPa (≈750.01 torr) or 29.53 inHg rather than the 101.325 kPa value of “one standard atmosphere”.[3] This value is used as the standard pressure for the compressor and the pneumatic tool industries (ISO 2787).[4] (See also Standard temperature and pressure.) In the United States, compressed air flow is often measured in "standard cubic feet" per unit of time, where the "standard" means the equivalent quantity of moisture at standard temperature and pressure. For every 1,000 feet you ascend the atmospheric pressure decreases 4%. However, this standard atmosphere is defined slightly differently: temperature = 20 °C (68 °F), air density = 1.225 kg/m³ (0.0765 lb/cu ft), altitude = sea level, and relative humidity = 20%. In the air conditioning industry, the standard is often temperature = 0 °C (32 °F) instead. For natural gas, the petroleum industry uses a standard temperature of 15.6 °C (60.1 °F), pressure 101.56 kPa (14.730 psi). (air pressure)